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Abstract--Two theoretical models for fluid flow and mass transfer at the trailing edge of a gas slug for 
small and large Reynolds numbers are suggested. In the case of small Reynolds numbers the creeping fluid 
flow at the trailing edge of a slug near a corner formed by a plane rigid wall and ga~liquid interface is 
investigated. The flow is caused by in-plane motion and by a fluid in the gap between a rigid wall and a 
gas-liquid interface. Using this model the rate of mass transfer from the bottom of a slug during gas 
absorptio~a is determined. In the case of high Reynolds numbers the vortex flow at the trailing edge of the 
gas slug is investigated. A model of a fluid flow and mass transfer in a vortex flow in cavities is applied for 

the investigation of vortex formation at the trailing edge of a gas slug. 

1. INTRODUCTION 

Hydrodynamics of fluid flow in the region below the 
bot tom of a gas; slug was investigated in a number 
of studies. Campos and Guedes de Carvalho [1, 2] 
investigated experimentally the wakes of slugs in the 
range of Reynolds numbers from 25 to 1.3 × 104 using 
small air bubble~; to trace the fluid flow. Inspection of 
the photograph,; shows that the vortex ring at the 
trailing edge of a gas slug forms when Re > 50. For 
Re < 180 the wakes are axially symmetric while in the 
range 180 < Re < 304 the vortex ring in the wake 
oscillates. The pattern of fluid flow in the wake of a 
slug was also investigated by Nakoryakov et al. [3]. 
Experimental re,,iults obtained in ref. [3] confirmed the 
results reported in ref. [1]. Mixing induced by air 
slugs rising in narrow channels filled with water was 
investigated experimentally and theoretically by 
Campos and Guedes de Carvalho [2]. In the latter 
paper a connection was established between the 
hydrodynamics of the wake and the stirring effect of 
gas slugs. Taitel et al. [4] studied fluid flow in a liquid 
plug which was simulated by a wall jet discharging 
into a large reservoir. Dukler et al. [5] investigated the 
periodical distortion of a viscous boundary layer in 
the mixing zone at the leading edge of the liquid plug 
and its renewal in the bulk of a liquid plug behind the 
mixing region. 

Mass transfer from the leading edge of the gas slug 
was investigated theoretically by van Heuven and 
Beek [6], Filla et al. [7] and Fominykh [8]. Van 
Heuven and Beck [6] investigated theoretically mass 
transfer from a pure gas slug during gas absorption 
by liquid, applying the general theory of mass transfer 
across free surfaces of Beek and Kramers [9]. The 
theoretical predictions of van Heuven and Beek [6] 
are in good agreement with the experimental results. 

Filla et al. [7] investigated theoretically a gas phase 
resistance controlled mass transfer from a single short 
slug during gas absorption in the presence of inert 
admixtures. In ref. [7], mixing in the gaseous phase 
was neglected and the approach by Kronig and Brink 
[ 10] for determination of a rate of mass transfer from 
the leading edge of a gas slug was employed. It is 
shown in ref. [7] that in the case of complete internal 
mixing, the convective mass transfer from the leading 
edge of a gas slug is determined by the velocity of 
liquid at the gas-liquid interface. The same approxi- 
mation was also applied in the study by Elperin and 
Fominykh [11]. 

A comparison between the predictions of the theory 
based on circulating streamline flow, concentration 
boundary layer theory and experimental data [7] 
showed that for Pe > 100 (where Pe = Vd/Dg) the 
concentration boundary layer theory is more realistic. 
Mass transfer during gas absorption from a slug in 
the presence of inert admixtures was investigated 
theoretically in ref. [8] taking into account the effect 
of  Stephan fluxes upon convective mass transfer in the 
gaseous phase. Absorption of a pure carbon dioxide 
from a single gas slug by water was investigated exper- 
imentally by van Heuven and Beek [6], Nakoryakov 
et al. [3], Niranjan et al. [12] and Esteves and Guedes 
de Carvalho [13]. 

Mass transfer from the cylindrical part of  a gas slug 
can be determined from theoretical and experimental 
investigations of mass transfer during gas absorption 
to falling liquid films [14-16]. In refs. [3, 13] mass 
transfer from a long gas slug with a spherical head and 
a cylindrical body was investigated experimentally. 
However, to the best of  our knowledge, the mass 
transfer at the bottom of a gas slug has not  been 
investigated. The purpose of this investigation is to 
present two models for fluid flow and mass transfer at 
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NOMENCLATURE 

constant in equation of turbulent 
diffusion, equation (76) [s-]] 
concentration of dissolved gas in liquid 
[kg m 3] 
concentration of dissolved gas in liquid 
surrounding vortex [kg m 3] 
concentration of dissolved gas in 
vortex [kg m 3] 
distance between walls [m] 
coefficient of molecular diffusion in the 
liquid phase [m z s 1] 
coefficient of molecular diffusion in gas 
[m 2 s -q  
diameter of a vortex [m] 
Peclet number, Ud/D 
fluid flow rate [m 2 s -I] 
Reynolds number, Ud/v 
Schmidt number, v/D 
velocity of gas slug in gas-liquid slug 
flow [m S -1] 
velocity of liquid in a falling film 
around a slug [m s-J] 
velocity of liquid in a vortex on the 
boundary of a viscous boundary layer 
[m s -q  

Vr, VO velocity components in polar 
coordinates [m s i] 

V velocity of gas slug rising in a stagnant 
liquid [m s -q  

x, y coordinates [m]. 

Greek symbols 
fl coefficient of mass transfer [m s-~] 
6~ thickness of viscous boundary layer 

[m] 
0 angle [rad] 
v kinematic viscosity [m 2 s-l]  
~(r) variable in equation (35) [m e s -l] 
p liquid density [kg m -3] 

constant in equation of turbulent 
diffusion, equation (73) [m] 

~k stream function [m 2 S-l] 
~o angle velocity of liquid in the vortex 

[s-q 
~o~ fluid vorticity [s-l]. 

Subscripts 
s value at interface 

value at infinity 
0 value at inlet. 

the trailing edge of a gas slug and to estimate the 
contribution of the trailing edge of a gas slug to the 
total mass flux from a gas slug in cases of small and 
large Reynolds numbers. 

2. CASE OF SMALL REYNOLDS NUMBERS 

In the case of small Reynolds numbers (Re < 1) 
fluid flow at the trailing edge of gas slug can be con- 
sidered as a creeping fluid flow in the corner formed 
by a free surface of the bottom of a slug and a moving 
wall. For simplicity we assume plane flow between 
two parallel walls. In a frame moving with a rising 
slug the wall moves down with a constant velocity U 
equal to the gas slug velocity in a gas-liquid flow (see 
Fig. 1). The flow is caused by in-plane motion of a 
wall and fluid flow in the gap between a wall and the 
bottom of a slug. The flow rate Q in a gap is deter- 
mined by the distance between the walls and by the 
velocity of the rising slug in a stagnant fluid Q = Vd/2. 
The stream function of a creeping fluid flow at the 
trailing edge of the gas slug is found as a solution of 
a biharmonic equation [17, 18]: 

v2(v2q,) = 0. (1) 

The boundary conditions for equation (1) at a rigid 
moving wall and at the free surface at the bottom of 
a gas slug in the plane polar coordinates are: 

°l 

"~=0 

Fig. 1. Model of fluid in the tail part of a gas slug at small 
Reynolds numbers. 

o~=Ur and ~ = 0  at 0 = 0  (2) 

~2g, 
- - = 0  and O = Q  at 0 = 0 0 .  (3) 
002 
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The components of  fluid velocity can be determined 
from the stream function: 

06 1 06 
V o = - - ~ r  V r - r  00" (4) 

The boundary value problem (1)-(3) can be solved by 
separation of variables using the method suggested in 
ref. [18]. Denote 

6 = 6, +6~ (5) 

where 

and 

6,  = Urf(O) (6) 

62 = Qg(0). (7) 

Substituting equation (5) into equations (1)-(3) we 
transform the boundary value problem (1)-(3) into 
two independent boundary value problems: 

and 

V2(V26,) = 0 

06, 
= U,, and 6, = 0  at 0 = 0  

00 

026~ 
- - = 0  and 61 = 0  at 0 = 0 o  
002 

72(7262) = 0 

and 62 = 0 
062 
- - =  0 at 0 = 0  
00 

0262 
- 0  and 6 2 = Q  at 0 = 0 o .  (13) 002 

Equations (8)-(10) describe a slow viscous fluid flow 
in the corner fomaed by a free surface at the bottom 
of a slug and a moving rigid wall. The flow in this case 
is caused only by the motion of the wall. Equations 
(11)-(13) describe a slow viscous fluid flow in the 
corner formed by a free surface of the bottom of a gas 
slug and stagnant rigid wall. This situation occurs 
when a gas slug is fixed in a tube by a descending 
stream of liquid. Substituting 6, = Urf(O) into bihar- 
monic equation (8) yields the ordinary differential 
equation for f: 

f " ' + 2 f " + f  = 0 (14) 

where primes denote differentiation with respect to 0. 
The general solution (14) reads 

f = As inO+BcosO+COs inO+DOcosO.  (15) 

The boundary conditions for equation (14) are: 

f = 0  at 0 = 0  (16a) 

f ' = l  at 0 = 0  (16b) 

f = 0  at 0 = 0 o  (17a) 

f " = 0  at 0 = 0 0 .  (17b) 

Boundary conditions (16a) and (16b) imply that the 
normal fluid velocity component Vo at a moving solid 
wall is equal to zero and the tangential fluid velocity 
component at the wall vr is equal to the velocity of a 
moving solid wall. Boundary conditions (17a) and 
(17b) imply impermeability of a gas-liquid interface 
for a liquid phase and zero shear stress at a gas-liquid 
interface, respectively. 

The constants in equation (15) are determined from 
the boundary conditions (16) and (17): 

200 
sin 200 - 200 

A 

B = 0  

C 
2 sin 2 00 

sin 20o - 20o 

sin 200 
D (18) 

(8) sin 20o-- 200" 

Since Vo = - Uf, vr = Uf '  the expressions for Vo and vr 
(9) can be found explicitly: 

vo/U = - - A s i n O - C O s i n O - - D O c o s O  (19) 

(10) vr/U = AcosO+C(s inO+OcosO)  

+ D (cos 0 -  0 sin 0). (20) 

Substituting 62 = Qg(O) into equation (11) yields the 
(11) ordinary differential equation for 9: 

(12) 49" +#" '  = 0. (21) 

The boundary conditions for equation (21) are: 

g = 0  at 0 = 0  (22a) 

0 ' = 0  at 0 = 0  (22b) 

9 =  1 at 0 = 0 o  (23a) 

9 " = 1  at 0 = 0 0 .  (23b) 

Boundary conditions (22a) and (22b) imply zero 
stream function and fluid velocity at the stationary 
solid wall. Boundary conditions (23a) and (23b) imply 
the presence of a mass source with strength Q and zero 
shear stresses at a gas-liquid interface, respectively. 

The general solution of the differential equation 
(21) is: 

g = E s i n 2 0 + F c o s 2 0 + G + H O .  (24) 

Constants E, F, G and H in a formula (24) are deter- 
mined from the boundary conditions (22) and (23): 

1 
E =  

200 - tan 20o 

tan 200 
F -  

20o - tan 20o 

tan 20o 
G -  

20o - tan 20o 
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2 
H - 20o - - tan  200" (25) 

Since Vo =-Q[89(O)/dr] ,  vr = (Q/r) [~9(0)/80], the 
expressions for Vo and vr are: 

vo = 0 (26) 

vr = Q (2E cos 2 0 -  2F sin 20 + H). (27) 
r 

Using equations (15), (18)-(20) and (24)-(27) we 
obtain the solution of a general problem of a slow 
viscous fluid flow in a corner formed by the free sur- 
face at the bottom of a slug and a moving wall: 

0 -- Ur(A sin 0 + CO sin 0 + DO cos 0) 

+ Q ( E s i n 2 0 + F c o s 2 0 + O H + G )  (28) 

vo/U -=- -As inO--COsinO--DOcosO (29) 

vr =- U ( A cos O + C (sin O + O cos O) 

+ D (cos 0-- 0 sin 0)) 

+ Q ( 2 E c o s 2 0 - 2 F s i n 2 0 + H ) .  (30) 
r 

In order to determine the mass transfer rate from the 
bottom of a gas slug we assume that the concentration 
boundary layer at the bottom of the slug starts to 
grow from the intersection line zero (see Fig. 1). 
Therefore the convective mass transfer is determined 
by fluid velocity at the bottom of a slug. Assuming 
that 0o = ~/2 we can determine fluid velocity at the 
bottom of the slug from equation (30): 

2U 4Q 
vr~ = - -  + - - .  (31) 

7I" 7~r 

Mass transfer during gas absorption at the bottom of 
a gas slug is governed by the equation of convective 
diffusion written in Cartesian coordinates x and y (see 
Fig. 1): 

b \  dc 8% 
a +  x ) ~ x  = D--oy 2 (32) 

where a = 2U/lr and b = 4Q/lr. 
Boundary conditions at the gas-liquid interface and 

at infinity are: 

c = c s  at y = 0  (33) 

c = c 0  at y ~ o o .  (34) 

Introducing the new variable 

= a x + b l n x  (35) 

equation (32) can be transformed into the equation 
similar to equation of heat conduction: 

Oc ~?2c 
- . ( 3 6 )  84 -- D Oy2 

The solution of equation (36) with boundary con- 
ditions (33) and (34) yields: 

c = Co - (Co -c~)  erfc(~/) (37) 

where q = y/2x/D{. 
The coefficient of mass transfer at the bottom of the 

gas slug can be determined from the solution (37): 

\ @ ] ,  = o D 1 
f l  - ( 3 8 )  

c~--co rcL'2x/(ax+blnx)" 

Expression (38) implies that the coefficient of mass 
transfer from the trailing edge of a gas slug in the 
case of small Reynolds number (Re < 1) has the same 
order of magnitude as the coefficient of mass transfer 
from the leading edge of a gas slug [6]. Convective 
mass transfer from the trailing edge of a gas slug is 
determined by the velocity of a rising slug. 

3. CASE OF LARGE REYNOLDS NUMBERS 

In the case of large Reynolds numbers (Re > 50) a 
toroidal vortex is formed at the trailing edge of a gas 
slug (see ref. [1]). In order to study a fluid flow and 
mass transfer at the trailing edge of the gas slug we 
apply the approach suggested for investigation of fluid 
flow and mass transfer in cavities. For  simplicity we 
consider a plane flow at the trailing edge of a slug is 
caused by a wall jet that emerges from a gap between 
the surface of the gas slug and the wall [4]. A schematic 
view of a gas slug with two vortices at the trailing edge 
of a gas slug is shown in Fig. 2. A detailed picture of 
the flow domain denoted by a dotted line in Fig. 2 is 

x 

i 

, i 

Fig. 2. General view of a vortex flow at the trailing edge of 
a gas slug. 
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~=0 D / A 

yC[ ] B 

X 2 
X 1 

Fig. 3. Detailed picture of the flow domain denoted by a 
dotted line in Fig. 2. 

presented in Fig. 3. Consider the case of a laminar 
mixing zone. Flow at the trailing edge of the gas slug 
can be divided into three domains: (1) region of unper- 
turbed flow; (2) region of mixing; and (3) region of 
vortex flow (see Fig. 3). The region of vortex flow 
can be subdivided into a potential core and a viscous 
boundary layer !i19, 20]. Velocity at the boundary 
of the viscous boundary layer U2 is assumed to be 
constant. Fluid flow in the mixing zone AB is 
described by a system of equations of motion and 
continuity [19]: 

Ou au a2u 
u - -  +v~-~l = v (39) 

Oxl dyl 

Ou Ov 
ax, + ~Yl = 0 (40) 

with boundary conditions 

u=U1 v = 0  at x l~<0  y l~>0  

u=U2 v = 0  at x ,~<0  y ,~<0  

U = ~-']'1 at x~ > 0 y~ ~ 

u = U 2  at x l > O  y ~ - o o  

where U1 is the average fluid velocity in a falling liquid 
film between the gas slug-liquid interface and a tube 
wall. The solution of equations (39)-(40) with boun- 
dary conditions (41)-(44) yields (for details see, e.g. 
ref. [19]): 

u = - - - - ~ -  14 ~ - - ~ U 2 )  ~/n e-T2dz (45) 
0 

where ~ = (~/U1)yl/(2x/VXl). The unknown velocity 
U2 at the boundary of the viscous boundary layer in 
a vortex can be determined from an integral relation 
derived in ref. [19]: 

~ ( z -  2#coa)d/= 0. (46) 

Integral relation (46) was derived in ref. [19] by inte- 
grating the boundary layer equations along the closed 

-Yl curve. The shear stress at the segment CD is equal to 
zero due to conditions of symmetry. The shear stress 
at a free surface at the bottom of the gas slug DA also 
equals zero. The shear stresses at the segments AB 
and BC are determined from equation (45): 

fl pl/2pl/2 z(x l )dxl= nil2 (U,-U2)x/UII (47) 

fl 1~1/2pl/2 
z(x2)dx2 - n l /~  U2x/U21 (48) 

where ! is a vortex diameter. Equation (48) is derived 
under the assumption that fluid below the segment 
BC is stagnant. Since vorticity in the potential vortex 
is constant, the equation for the angular velocity of 
fluid in the vortex is [20]: 

09 = ½c% (49) 

therefore the expression for the velocity at the boun- 
dary of the viscous layer in the vortex is: 

U s = o)//2. (50) 

Equations (46)-(50) yield the following equation for 
determining U2: 

U2 3/2 U2 (8n3/2v 1/2 1) 1. (51) 
(U]) q-Ul \U~/2l 1/~ ~ = 

Assuming that (Ou/Oy)y=o >> (Ou/Oy)y_a~ (see ref. [19]), 
expression (51) reduces to: 

(us~ ~/~ us 
U-T/ + ~-~ = 1. (52) 

(41) Expression (52) yields UJU1 = 0.66. 
In the analysis of mass transfer we assume that 

(42) concentration of a dissolved gas in the vortex is equal 
to the unknown constant value e2 and that the con- 

(43) centration of dissolved gas in a fluid surrounding the 
(44) vortex is equal to the concentration of the dissolved 

gas in a falling liquid film. The distribution of con- 
centrations in the region of mixing AB is found from 
the solution of the equation of convective diffusion 

Oc Oc 0% 

with the following boundary conditions 

c=cl  at Yl />0 xl ~<0 (54) 

c=c2 at Yl ~<0 xl ~<0 (55) 

c=cl  at Yl--*oo xl ~>0 (56) 

c=c2 at Y l - - * - o o  x~ ~>0. (57) 
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Using the solution of the hydrodynamic problem (45) 
we find mass and total mass flux: 

a,) = 
WC, -c,) Ju, SC 

2 Jiwx, (W i s q&,1 dx, = 
D(c2 -c,) Ju, scl 

0 

J (59) 
XV 

Using the same approach we arrive at the formulas 
for mass flux and total mass flux at segment BC: 

q&l = 
D(c~-c,) Ju, SC 

2 J7cvx2 (60) , s q&W, = 
D(c2 -c,) Ju, scl 

0 

J (61) 
70 

Mass flux qc(x3) is equal to zero due to conditions of 
symmetry. Mass flux qc(x4) is determined from the 
solution of the equation of convective diffusion: 

with the following boundary conditions (70) 

c = c, at y4 = 0 (63) 

c = cz at y, -+ co (64) 

where axis y, is normal to x4. 
The solution of the boundary value problem (62)- 

(64) yields: 

and 

I 

I 
t(x2) dx, = 0.0132U;pl. 

0 
(71) 

Assuming that (&/LJy),,, >> (&/t?y),+ and taking 
into account that equation (46) is valid in the case of 
turbulent mixing, we derive from equations (46), (70) 
and (71) the equation for U,: qckd = 

D(cs -cd JG SC 

J 
(65) 

nvxq 

I s q&W~ = 
2D(c,-c,)Ju, Scl 

0 

J . (66) 
7LV 

Since the total mass in the control volume depicted in 
Fig. 2 is constant 

P 
q,(x) dx = 0 (67) 

therefore 

I s qch) dx, = ’ qdx,) dx, + ’ q&d dx,. 
II s II s 0 

(f-58) 

Equation (68) yields the following formula for con- 
centration of dissolved gas in the vortex: 

c2 = ~csJw+c,(J~,+Jw 
3Ju,+Ju, 

(69) 

Mass flux from the bottom of a gas slug for the case 
of vortex flow at the trailing edge of the slug with a 
laminar mixing zone is determined from formulas (65) 
and (69). 

In the case of long slugs the coefficient of mass 

transfer from the cylindrical part of 
determined by the following formula: 

2DJU, SC 

’ = JZVI 

the gas slug is 

where U, is fluid velocity in a liquid film and I is the 
length of the cylindrical part of a gas slug. If the length 
of the cylindrical part of a slug is equal to its radius, 
the ratio of the coefficient of mass transfer from the 
trailing edge of the gas slug to the coefficient of mass 
transfer from the cylindrical part of a gas slug is 
Ju,/u, = 0.81. F or short slugs (IS = 1%3d) the con- 
tribution of the bottom of a gas slug to the total mass 
flux from a gas slug is quite significant. 

In the case of vortex formation at the trailing edge 
of a gas slug with turbulent mixing zone the shear 
stress on segments AB and BC can be obtained using 
the solution of the problem of mixing of two parallel 
streams [21, 221: 

I 

s 
z(xl) dx, = 0.0132[& (U, - U,)](U, - U&l 

0 

(72) 

Equation (72) implies that U,/U, = 0.55 in the case of 
vortex flow with a turbulent mixing zone. Then the 
distribution of concentration of the dissolved gas in 
the mixing zone is found from the solution of the 
equation of turbulent diffusion [22]: 

u: +u$ = x(U, - U:)$ (73) 
1 1 I 

with boundary conditions (54)-(57). From the solu- 
tions of equations (73) and (54)-(57) we obtain: 

I 

s 
q&) dx, = 0.0511 Ju, W, - u2)l(c2 -cl) 

0 

(74) 

I 

s 
qc(x2) dx2 = O.O51U, (c2 -c,). (75) 

0 

Mass flux from the bottom of the gas slug is deter- 
mined from the solution of the equation of turbulent 
diffusion: 
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Oc O / 2 Oc "~ 
U2 ~X,; = ~ ;4  { ( D + a y , ) ~ - ]  (76) 

\ oY4] 

with boundary conditions (63) and (64) (see ref. [14]): 

q c ( X 4 ) = ~ ( X 4 ) ( C s ' - - C 2 )  - -  _ _  
DI/2 U~/2 

~1/2xl /2  

ax 4 ax ] \ 
x 1+ U2 8 U ~ ) ( G - c 2 )  (77) 

f0 )If/~( qc(x4) dx4 = ( G -  c2 x4) dx ,  

,~/-~1/2 Tfl /2II /2 /" a212 
. . . .  ~2 - ~1 al =  cs-c ) 7 + (78) 

Equations (67), (74), (75) and (78) yield the following 
formula for the concentration of  dissolved gas in the 
vortex: 

G fl fl(x4) dx4 + c, 0.051([x/U, (U, - U2)] + U2) 

c2 - fl/~(x,) dx, + 0.05([4G (G - G)] + G )  

(79) 

Mass flux from the bot tom of  the gas slug for the case 
of  vortex formation at the trailing edge of  the slug 
with a turbulent mixing region is determined by for- 
mulas (77) and (79). 

,4. C O N C L U S I O N S  

In this study we analyzed fluid flow and mass trans- 
fer at the trailing edge of  a gas slug for small and large 
Reynolds numbers. It was shown that in the case of  
small Reynolds numbers fluid flow at the trailing edge 
of  the gas slug can be described as a creeping viscous 
fluid flow in the corner between the free surface at the 
bot tom of  the gas slug and the moving wall. In the 
case of  large Reynolds numbers fluid flow below the 
bot tom of  the gas slug can be described as a vortex 
flow with laminar and turbulent mixing zones. 

The derived formulas (38), (65), (69), (77) and (79) 
show that the coefficient of  mass transfer from the 
trailing edge of  a gas slug is of  the same order of  
magnitude as the coefficient of  mass transfer at the 
leading edge of  a gas slug and the coefficient of  mass 
transfer at the cylindrical part of  a gas slug. In the 
case of  short slugs (Is = 1.5-3d) the contribution of  
the bot tom part of  a gas slug to the total mass flux 
from a gas slug is quite large. In the case of  long slugs 
(Is >~ 10d) the contribution of  the bot tom of  a gas slug 
to the total mass flux from a gas slug is negligibly 
small. 
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